Abstract
In this paper, the notions of topological shadowing, topological ergodic shadowing, topological chain transitivity and topological chain mixing are introduced and studied for an iterated function system (IFS) on uniform spaces. It is proved that if an IFS has topological shadowing property and is topological chain mixing, then it has topological ergodic shadowing and it is topological mixing. Moreover, if an IFS has topological shadowing property and is topological chain transitive, then it is topologically ergodic and hence topologically transitive. Also, these notions are studied for the product IFS on uniform spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.