Chlorogenic acid (CGA) is the main component of coffee and an antioxidant. CGA has been reported to bear various good health effects. At the same time, it has been found that the addition of CGA induces an undesirable deformation of red blood cells. This fact suggests that CGA may bind to the proteins or/and membrane lipids of red blood cells. This study aimed to examine how CGA binds the bilayers of phosphatidylcholine (PC), one of red blood cells' primary lipids. To this end, we investigated the effect of CGA on the phase behavior and the structure of dipalmitoyl-PC (DPPC) bilayers in the form of multi-lamellar vesicles. Calorimetry and dilatometry measurements showed that the DPPC chain melting transition cooperativity decreases as increasing CGA concentrations. In addition, X-ray diffraction results showed that the lamellar repeat periodicity becomes disordered, and the periodicity disappears completely at high CGA concentrations. Together with these findings, it can be inferred that the CGA molecules do not penetrate inside the DPPC bilayers but bind to their surface in a negatively charged form.
Read full abstract