Abstract

Two hybrids 1,7-heptanediammonium di-halide, [(C7H20N2]X2,X = Cl/Br crystallize in monoclinic P21/c, Z = 4. [(C7H20N2]Cl2: a = 4.7838 (2) Å, b = 16.9879 (8) Å, c = 13.9476 (8) Å, β = 97.773 (2)°, V = 1203.58(10) Å3, D = 1.137 g/cm3, λ = 0.71073 Å, R = 0.052 for 1055 reflections with I > 2σ(I), T = 298(2) K. [(C7H20N2]Br2: a = 4.7952 (10) Å, b = 16.9740 (5) Å, c = 13.9281 (5) Å, β = 97.793 (2)°, V = 1203.83(6) Å3, D = 1.612 g/cm3, λ = 0.71073 Å, R = 0.03 for 1959 reflections with I > 2σ(I) T = 298(2) K. Asymmetric unit cell of [(C7H20N2]X2,X = Cl/Br, each consist of one heptane-1,7-diammonium cation and two halide anions. The organic hydrocarbon layers pack in a stacked herring-bone manner, hydrogen bonded to the halide ions. Lattice potential energy is 1568.59 kJ/mol and 1560.78 kJ/mol, and cation molar volumes are 0.295 nm3 and 0.300 nm3 for chloride and bromide respectively. DTA confirmed chain melting transitions for both hybrids below T ∼ 340 K. Dielectric and ac conductivity measurements (290 < T K < 410; 0.080 < f kHz<100) indicated higher conductivity and activation energy of bromide for T > 340 K. Cross over from Jonscher's universal dielectric response at low temperatures T < 340 K to super-linear power law for T > 340 K is observed. At high temperatures halide ion hopping in accordance with the jump relaxation model prevails.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.