Abstract

The phase behavior of membrane lipids plays an important role in the formation of functional domains in biological membranes and crucially affects molecular transport through lipid layers, for instance, in the skin. We investigate the thermotropic chain melting transition from the ordered Lβ phase to the disordered Lα phase in membranes composed of dipalmitoylphosphatidylcholine (DPPC) by atomistic molecular dynamics simulations in which the membranes are subject to variable heating rates. We find that the transition is initiated by a localized nucleus and followed by the propagation of the phase boundary. A two-state kinetic rate model allows characterizing the transition state in terms of thermodynamic quantities such as transition state enthalpy and entropy. The extrapolated equilibrium melting temperature increases with reduced membrane hydration and thus in tendency reproduces the experimentally observed dependence on dehydrating osmotic stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.