Due to its superior insulating qualities, SF6 gas is extensively used in the power sector. However, because of its poor environmental protection properties, finding ecologically acceptable insulating gas has become a critical challenge in the power sector in the context of pursuing green electricity. This work simulates the arc-quenching performance of a gas mixture of CF3I and CO2, which is thought to be a workable substitute for SF6 gas. The COMSOL software is used to build a two-dimensional model of a single-pipe arc-quenching chamber based on the concepts of magnetohydrodynamics (MHD) theory. The lightning impulse current is made by applying electrical stimulation to pure CO2 gas, gas mixtures with 10% CF3I and 90% CO2, and gas mixtures with 30% CF3I and 70% CO2 in the single-pipe arc-quenching chamber. During the first stage of arc formation, the results show that CF3I/CO2 gas mixtures with 10% and 30% CF3I have lower electrical conductivity than pure CO2 gas. An 8/20 μs lightning impulse current waveform with a magnitude of 4 kA is used for this observation. The highest airflow velocity for pure CO2 is 1744 m/s, but the mixture of 10%/90% CF3I/CO2 has a maximum airflow velocity of 1593 m/s. The 30%/70% CF3I/CO2 mixture has the highest maximum airflow velocity at 1840 m/s. Airflow velocity increases and the overpressure in the arc-quenching chamber is prolonged when there is a greater concentration of CF3I gas in the gas mixture. Consequently, these factors greatly reduce the duration of the arc-extinguishing time. The arc-quenching chamber’s overpressure is extended when the amount of CF3I gas in the gas mixture is increased, which increases the velocity of the airflow. As a result, these factors significantly decrease the duration of the arc-extinguishing time.
Read full abstract