Abstract
Non-global-warming CF3I gas has been investigated as a removal etchant for SiO2 film. Thermally fabricated SiO2 films were etched by the plasma generated with a gas mixture of CF3I and O2 (CF3I/O2) in the plasma-enhanced chemical vapor deposition chamber. The etch rate of SiO2 films was studied along with the process parameters of plasma etching such as chamber pressure, etching gas flow ratio of CF3I to CF3I/O2, plasma power, and chamber temperature. Increasing the chamber pressure from 400 to 1,000 mTorr decreased the etch rate of SiO2 film. The etch rate of this film showed a minimum value at a gas flow ratio of 0.71 in CF3I to CF3I/O2 and then increased at a higher CF3I gas flow ratio. In addition, the elevated plasma power increased the etch rate. However, the chamber temperature has little effect on the etch rate of SiO2 films. When only CF3I gas without O2 was supplied for etching, polymerized fluorocarbon was formed on the surface, indicating the role of oxygen in ashing the polymerized fluorocarbon during the etching process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.