To compare image quality and interobserver agreement in evaluations of neuroforaminal stenosis between 1.5T cervical spine magnetic resonance imaging (MRI) with deep learning reconstruction (DLR) and 3T MRI without DLR. In this prospective study, 21 volunteers (mean age: 42.4 ± 11.9 years; 17 males) underwent cervical spine T2-weighted sagittal 1.5T and 3T MRI on the same day. The 1.5T and 3T MRI data were used to reconstruct images with (1.5T-DLR) and without (3T-nonDLR) DLR, respectively. Regions of interest were marked on the spinal cord to calculate non-uniformity (NU; standard deviation/signal intensity × 100), as an indicator of image noise. Two blinded radiologists evaluated the images in terms of the depiction of structures, artifacts, noise, overall image quality, and neuroforaminal stenosis. The NU value and the subjective image quality scores were compared between 1.5T-DLR and 3T-nonDLR using the Wilcoxon signed-rank test. Interobserver agreement in evaluations of neuroforaminal stenosis for 1.5T-DLR and 3T-nonDLR was evaluated using Cohen's weighted kappa analysis. The NU value for 1.5T-DLR was 8.4, which was significantly better than that for 3T-nonDLR (10.3; p < 0.001). Subjective image scores were significantly better for 1.5T-DLR than 3T-nonDLR images (p < 0.037). Interobserver agreement (95% confidence intervals) in the evaluations of neuroforaminal stenosis was significantly superior for 1.5T-DLR (0.920 [0.916-0.924]) than 3T-nonDLR (0.894 [0.889-0.898]). By using DLR, image quality and interobserver agreement in evaluations of neuroforaminal stenosis on 1.5T cervical spine MRI could be improved compared to 3T MRI without DLR.
Read full abstract