Lines of evidence suggested that systems involved in the regulation of the stress responses and energy homeostasis are highly integrated. Because cerulenin, the natural antibiotic product of the fungus Cephalosporium ceruleans and a broad-spectrum fatty acid synthesis (FAS) inhibitor, has been shown to affect food intake and energy balance, and because the biomarker of stress Hsp-70 gene was found to interact directly with fatty acids, we hypothesized that cerulenin may regulate Hsp-70 gene expression. Therefore, the present study was undertaken to examine this issue. Cerulenin administration significantly (P < 0.05) decreased food intake and induced Hsp-70 mRNA levels in muscle, but not in liver or hypothalamus of 2-wk-old broiler chickens. These changes were accompanied by an unpregulation of muscle uncoupling protein and carnitine palmitoyltransferase 1 mRNA levels. This result indicated that the regulation of Hsp-70 gene expression in normal chickens, as estimated by oxidative stress indices [TBA reacting substances, ferric reducing/antioxidant power, and ceruloplasmin oxidase activity] levels, is tissue-specific. In attempt to discriminate between the effect of cerulenin and cerulenin-reduced food intake on Hsp-70 gene expression, we also evaluated the effect of food deprivation on the same cellular responses. Food deprivation for 16 h did not affect Hsp-70 gene expression in all tissues examined, indicating that the effect of cerulenin is independent of the inhibition of food intake. To ascertain whether the effect of cerulenin is direct or indirect, we carried out in vitro studies. Cerulenin treatment did not affect Hsp-70 gene expression in Leghorn male hepatoma and quail myoblast cell lines, suggesting that the observed effect in vivo may be mediated through the central nervous system.
Read full abstract