BackgroundNeurodegenerative diseases are among the most common diseases in older adults worldwide. Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common neurodegenerative diseases, and are accompanied by cerebral cortical atrophy, neuronal loss, protein accumulation, and excessive accumulation of metal ions. Natural products exhibit outstanding performance in improving cerebral circulatory disorders, promoting cerebral haematoma absorption, repairing damaged nerve tissue, and improving damaged nerve function. In recent years, studies have shown that neuroinflammatory mechanisms and signalling pathways closely related to the occurrence and development of neurological diseases include microglial activation, nuclear factor-κB (NF-κB) pathway, mitogen activated protein kinases (MAPK) pathway, reactive oxygen pathway, nucleotide binding oligomerisation domain-like receptor protein3 (NLRP3) inflammasomes, toll-like receptor4 (TLR4) pathway, nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, and intestinal flora. Therefore, this study considered the mechanism of neurological diseases as the starting point to review the mechanism of action of natural products in the prevention and treatment of AD and PD in recent years to provide a theoretical basis for clinical prevention and treatment. AimNatural products are a promising source of novel lead structures that have long been used to treat various nervous system diseases. MethodologyThis review collected literature on neurological diseases and natural products from 2012 to 2022, which were mainly searched through databases such as ScienceDirect, Springer, PubMed, SciFinder, China National Knowledge Infrastructure (CNKI), Wanfang, Google Scholar, and Baidu Academic. The following keywords were searched: neurological disorders, natural products, signalling pathway, mechanism of action. ResultsThis review summarises the pathogenesis of degenerative neurological diseases, recent findings on natural products used in neurodegenerative diseases, and the molecular mechanisms underlying these effects.