BackgroundTo assess whether glass-ceramic shade, thickness and translucency affect degree of conversion (DC) and Knoop microhardness (KHN) of resin cements photoactivated using light-emitting diode (LED) or quartz-tungsten-halogen (QTH) units. Material and MethodsGlass-ceramic blocks were cut (2, 3 and 4mm) and sintered. For DC FT Raman spectroscopy (n=3), film specimens of cements (RelyX ARC, U200, Veneer, C&B) were obtained. For KHN test (n=3), cements were inserted in cylindrical matrix and covered by polyester strip. Specimens were photoactivated (30s) using LED or QTH according to each group: direct photoactivation (DP), interposing ceramic specimens or no photoactivation (NP). Data were analysed by ANOVA and Tukey’s test, Kruskal-Wallis and Dunn’s tests (p<0.05). ResultsCeramic features had significant effect on DC of RelyX ARC, U200 and Veneer (p<0.0017). Light source had no effect (p=0.9512). C&B and Veneer had higher DC, followed by dual cements. NP dual cements showed the lowest DC. For KHN, ceramic shade (p=0.1717) and light source (p=0.1421) were not significant, but ceramic translucency, thickness and resin cement were significant (p=0.0001). KHN was higher for U200 followed by ARC, and lowest for Veneer. ConclusionsDC was affected by ceramic shade, translucency and thickness. KHN was dependent on ceramic translucency and thickness. Higher DC and KHN were achieved for dual-cured cements photoactivated through 2mm-thick low translucent or 3mm-thick high translucent glass-ceramic. Key words:Cementation, composite resin cements, dental curing lights, glass ceramics.
Read full abstract