Accurately representing the complex linkages and inherent uncertainties included in huge datasets is still a major difficulty in the field of data clustering. We address these issues with our proposed Unified Neutrosophic Clustering Algorithm (UNCA), which combines a multifaceted strategy with Neutrosophic logic to improve clustering performance. UNCA starts with a full-fledged similarity examination via a λ-cutting matrix that filters meaningful relationships between each two points of data. Then, we initialize centroids for Neutrosophic K-Means clustering, where the membership values are based on their degrees of truth, indeterminacy and falsity. The algorithm then integrates with a dynamic network visualization and MST (Minimum Spanning Tree) so that a visual interpretation of the relationships between the clusters can be clearly represented. UNCA employs Single-Valued Neutrosophic Sets (SVNSs) to refine cluster assignments, and after fuzzifying similarity measures, guarantees a precise clustering result. The final step involves solidifying the clustering results through defuzzification methods, offering definitive cluster assignments. According to the performance evaluation results, UNCA outperforms conventional approaches in several metrics: it achieved a Silhouette Score of 0.89 on the Iris Dataset, a Davies-Bouldin Index of 0.59 on the Wine Dataset, an Adjusted Rand Index (ARI) of 0.76 on the Digits Dataset, and a Normalized Mutual Information (NMI) of 0.80 on the Customer Segmentation Dataset. These results demonstrate how UNCA enhances interpretability and resilience in addition to improving clustering accuracy when contrasted with Fuzzy C-Means (FCM), Neutrosophic C-Means (NCM), as well as Kernel Neutrosophic C-Means (KNCM). This makes UNCA a useful tool for complex data processing tasks.
Read full abstract