Abstract In this work, the small-strain and nonlinear dynamic properties of silty clay samples were studied by means of the low- and high-amplitude resonant column (RC) tests at various mean effective stresses (p’). The tested specimens were collected from the centre of Warsaw, district Śródmieście. Initially, the low-amplitude tests (below 0.001%) were conducted. Subsequently, the nonlinear testing was performed, at shearing strains greater than 0.001%. These tests were carried out in order to receive the dynamic properties of silty clay specimens in the nonlinear shear strain range. The small-strain material damping ratios (Dmin) of silty clay samples were also measured during the low-amplitude resonant column testing. The results show that increasing shear strain (γ) above the elastic threshold (γte) causes a decrease of the shear modulus (G) and normalized shear modulus (G/Gmax) of analyzed soil samples. Simultaneously, it is observed a increase of its damping ratio (D) and normalized damping (D/Dmin) with increasing shear strain (γ). Predictive equations for estimating normalized shear modulus and material damping of silty clay soils were presented here as well. The equations are based on a modified hyperbolic model and a statistical analysis of the RC tests results. The influence of unloading process on dynamic properties of the tested material was also discussed in the paper.
Read full abstract