Abstract

Abstract In this work, the small-strain and nonlinear dynamic properties of silty clay samples were studied by means of the low- and high-amplitude resonant column (RC) tests at various mean effective stresses (p’). The tested specimens were collected from the centre of Warsaw, district Śródmieście. Initially, the low-amplitude tests (below 0.001%) were conducted. Subsequently, the nonlinear testing was performed, at shearing strains greater than 0.001%. These tests were carried out in order to receive the dynamic properties of silty clay specimens in the nonlinear shear strain range. The small-strain material damping ratios (Dmin) of silty clay samples were also measured during the low-amplitude resonant column testing. The results show that increasing shear strain (γ) above the elastic threshold (γte) causes a decrease of the shear modulus (G) and normalized shear modulus (G/Gmax) of analyzed soil samples. Simultaneously, it is observed a increase of its damping ratio (D) and normalized damping (D/Dmin) with increasing shear strain (γ). Predictive equations for estimating normalized shear modulus and material damping of silty clay soils were presented here as well. The equations are based on a modified hyperbolic model and a statistical analysis of the RC tests results. The influence of unloading process on dynamic properties of the tested material was also discussed in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call