Objective To establish a porcine eye model for manual sub-Bowman layer photorefractive keratomileusis (SBPRK), which is a reformed surface ablation refractive surgery that results in preserving the corneal Bowman layer (BL). Methods The SBPRK group consisted of eleven eyes of 8 healthy pigs with BL flaps by mechanical technique followed by laser ablation. Regarding the remaining 5 eyes, 3 random eyes had transepithelium photorefractive keratectomy (TransPRK) (the TransPRK group), while the other 2 eyes were untreated (the blank control group). All the pigs were followed up for 8 weeks. Slit-lamp biomicroscopy and optical coherence tomography (OCT) were examined before the surgeries and at 1 week, 4 weeks, and 8 weeks after the surgeries. Results In a few days after the surgery, 3 eyes of the SBPRK group were excluded from the study because of poor healing of the corneal flaps. At the 1st postoperative week, one eye had an irregular defect of about 3 mm in the central corneal epithelium area; the cornea of the other 7 eyes had just light edema with intact epithelium just like the cornea of the TransPRK group. At the 4th week, in the SBPRK group, the cornea was slightly hazy (haze stage 1). While in the TransPRK group, the cornea was hazier (haze stage 2). At the 8th week, in the SBPRK group, both corneas were almost transparent, and the edges of the BL flaps could not be clearly seen. Meanwhile, in the TransPRK group, the corneal haze became lighter and thinner. OCT showed that, in the SBPRK group, there was high reflection in the BL layer, and it was obvious at 1 week postoperation, decreased at 4 weeks, and calmed down at 8 weeks. However, in the TransPRK group, the high reflection diffused in the anterior corneal stroma at 1 week postoperation, enhanced at 4 weeks, and weakened at 8 weeks. Conclusions Preserving the BL while conducting surface refractive surgery may result in less haze than TransPRK. However, further study is still needed, and this technique still requires refining until it becomes a standard clinical procedure.
Read full abstract