Purpose: To compare the accuracy of seven artificial intelligence (AI)-based intraocular lens (IOL) power calculation formulas in medium-long Caucasian eyes regarding the root-mean-square absolute error (RMSAE), the median absolute error (MedAE) and the percentage of eyes with a prediction error (PE) within ±0.5 D. Methods: Data on Caucasian patients who underwent uneventful phacoemulsification between May 2018 and September 2023 in MW-Med Eye Center, Krakow, Poland and Kyiv Clinical Ophthalmology Hospital Eye Microsurgery Center, Kyiv, Ukraine were reviewed. Inclusion criteria, i.e., complete biometric and refractive data, were applied. Exclusion criteria were as follows: intraoperative or postoperative complications, previous eye surgery or corneal diseases, postoperative BCVA less than 0.8, and corneal astigmatism greater than 2.0 D. Prior to phacoemulsification, IOL power was computed using SRK/T, Holladay1, Haigis, Holladay 2, and Hoffer Q. The refraction was measured three months after cataract surgery. Post-surgery intraocular lens calculations for Hill-RBF 3.0, Kane, PEARL-DGS, Ladas Super Formula AI (LSF AI), Hoffer QST, Karmona, and Nallasamy were performed. RMSAE, MedAE, and the percentage of eyes with a PE within ±0.25 D, ±0.50 D, ±0.75 D, and ±1.00 were counted. Results: Two hundred fourteen eyes with axial lengths ranging from 24.50 mm to 25.97 mm were tested. The Hill-RBF 3.0 formula yielded the lowest RMSAE (0.368), just before Pearl-DGS (0.374) and Hoffer QST (0.378). The lowest MedAE was achieved by Hill-RBF 3.0 (0.200), the second-lowest by LSF AI (0.210), and the third-lowest by Kane (0.228). The highest percentage of eyes with a PE within ±0.50 D was obtained by Hill-RBF 3.0, LSF AI, and Pearl-DGS (86.45%, 85.51%, and 85.05%, respectively). Conclusions: The Hill-RBF 3.0 formula provided highly accurate outcomes in medium-long eyes. All studied AI-based formulas yielded good results in IOL power calculation.
Read full abstract