Southern blight disease, caused by the fungal pathogen Athelia rolfsii, suppresses plant growth and reduces product yield in Cannabis sativa agriculture. Mechanisms of pathology of this soil-borne disease remain poorly understood, with disease management strategies reliant upon broad-spectrum antifungal use. Exposure to chitosan, a natural elicitor, has been proposed as an alternative method to control diverse fungal diseases in an eco-friendly manner. In this study, C.sativa plants were grown in the Root-TRAPR system, a transparent hydroponic growth device, where plant roots were primed with .2% colloidal chitosan prior to A.rolfsii inoculation. Both chitosan-primed and unprimed inoculated plants displayed classical symptoms of wilting and yellowish leaves, indicating successful infection. Non-primed infected plants showed increased shoot defense responses with doubling of peroxidase and chitinase activities. The levels of growth and defense hormones including auxin, cytokinin, and jasmonic acid were increased 2-5-fold. In chitosan-primed infected plants, shoot peroxidase activity and phytohormone levels were decreased 1.5-4-fold relative to the unprimed infected plants. When compared with shoots, roots were less impacted by A.rolfsii infection, but the pathogen secreted cell wall-degrading enzymes into the root-growth solution. Chitosan priming inhibited root growth, with root lengths of chitosan-primed plants approximately 65% shorter than the control, but activated root defense responses, with root peroxidase activity increased 2.7-fold along with increased secretion of defense proteins. The results suggest that chitosan could be an alternative platform to manage southern blight disease in C.sativa cultivation; however, further optimization is required to maximize effectiveness of chitosan.
Read full abstract