Abstract

Fusarium graminearum is a cosmopolitan fungal pathogen that destroys cereal production, in terms of loss of yield and grain contamination with mycotoxins, worldwide. Chitosan is a natural biopolymer abundant in the environment with proven antifungal properties that also acts as a plant immunity elicitor. Despite a number of articles, there is a lack of systematic comparison of antifungal activity of diverse batches of chitosan. The current study aimed to test the inhibitory effects of a collection of diverse chitosan samples on the growth and production of F. graminearum toxins, validated by changes in the Fusarium transcriptome. Experiments included testing antifungal activity of different chitosan samples, the application of the best performing one in vitro to investigate the impact on F. graminearum growth, followed by analyzing its effect on Fusarium toxins accumulation, and Fusarium transcriptomics in the barley leaf pathosystem. Confirmatory antifungal assays revealed that CS_10, a specific batch of chitosan, retarded Fusarium growth with an application concentration of 200 ppm, significantly reducing toxin synthesis and disease symptoms in Fusarium-inoculated barley leaves. RNA-Seq analysis of F. graminearum in barley leaf pathosystem exposed to CS_10 showed a list of differentially expressed genes involved in redox balance, cell respiration, nutrient transport, cell wall degradation enzymes, ergosterol biosynthesis, and trichothecenes production. The genes functioning in these essential pathways are discussed and assigned as critical checkpoints to control Fusarium infections. The results suggest some important molecular targets in F. graminearum that may be suitable in gene-specific targeting or transgene-free methods, such as spray-induced gene silencing during host-pathogen interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call