Electrochemical impedance spectroscopy (EIS) is a non-invasive and label-free method widely used for characterizing cell cultures and monitoring their structure, behavior, proliferation and viability. Microfluidic systems are often used in combination with EIS methods utilizing small dimensions, controllable physicochemical microenvironments and offering rapid real-time measurements. In this work, an electrode array capable of conducting EIS measurements was integrated into a multichannel microfluidic chip which is able to trap individual cells or cell populations in specially designed channels comparable to the size of cells. An application-specific printed circuit board (PCB) was designed for the implementation of the impedance measurement in order to facilitate connection with the device used for taking EIS spectra and for selecting the channels to be measured. The PCB was designed in consideration of the optical screening of trapped cells in parallel with the EIS measurements which allows the comparison of EIS data with optical signals. With continuous EIS measurement, the filling of channels with cell suspension can be followed. Yeast cells were trapped in the microfluidic system and EIS spectra were recorded considering each individual channel, which allows differentiating between the number of trapped cells.