Abstract
One of the new xylitol producer microorganisms is Barnettozyma populi Y-12728 and it has great potential for the industry with its pure xylitol production capability. Different immobilization strategies, the usability of baffled or normal flasks with different agitation speeds, and various lignocellulosic hydrolysates were studied in this research. The highest xylitol production and yield values were 11.99 g xylitol/L and 40.28 % for the C1 trial at 70 ml medium with a suspended cell. For the immobilization strategy, 1 % polyethyleneimine concentration, 1.5 mm surface lattice thicknesses, and 8 3D cubes were determined to be the optimum conditions with 17.84 g/L xylitol production and 0.473 g xylitol/g xylose yield values in a 70 ml volume medium at 200 rpm, 30 °C, and 6.0 initial pH for 3 days. Rice husk, wheat bran, and oat husk hydrolysates were also used as a substrate for xylitol fermentation. The highest xylitol production was 2.26 g/L for lignocellulosic hydrolysates. In this research, FDM (Fused Deposition Modelling) based 3D printed cubes are used for the immobilization agent of Barnettozyma populi NRRL Y-12728 for the first time. The results revealed that FDM-based 3D-printed cubes could be used to immobilize cells and improve productivity for xylitol production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.