A new series of seven gold(I) complexes (1-7) containing 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and phosphane ligands (L1-L7) were synthesized and evaluated for antitumor activity in ovarian cancer (OvCa) models. The synthesized complexes were characterized by IR, mass spectrometry and NMR spectroscopy, and complex 6 was characterized by XRD crystallography. The antiproliferative effect of the new complexes (1-7) was found to be higher than cisplatin and auranofin in OvCa cells sensitive and resistant to cisplatin. The anticancer activity of the most active complex 6 was investigated using OvCa in vitro models, including three-dimensional (3D) multicellular tumor spheroids and in vivo tumor xenografts. Both cisplatin and auranofin were used for comparative purposes. Complex 6 induced apoptosis, mitochondrial reactive oxygen species, and DNA damage; caused a G1 phase cell cycle arrest, inhibited proteasome activity, and cell migration; modified actin polymerization; and significantly inhibited OvCa murine xenografts. These promising results suggest further preclinical testing of these complexes for future applications.