Abstract
Hematopoietic stem cells show biological manifestations of aging, diminished hematopoietic function and abnormal differentiation, which can lead to leukemia. It is therefore important to explore the mechanism underlying hematopoietic stem cell aging to develop strategies for delaying the process. Our evaluations revealed that the number of bone marrow hematopoietic cells (BMHCs) started to decrease significantly after 45 years of age, and the number of senescent BMHCs, as determined by senescence-associated beta-galactosidase staining, gradually increased with age. In addition, BMHCs from individuals over 45 years of age presented with notably reduced proliferative capacity, increased G1-phase cell cycle arrest, and significantly decreased generation of mixed colony forming units, which suggests that BMHCs enter senescence during middle age. Furthermore, we observed significantly lower antioxidant capacity and a significant increase in oxidative damage products, a gradual increase in the expression of senescence-associated proteins and genes, and a gradual decrease in the expression of cell cycle related proteins in BMHCs after middle age. Taken together, these findings offer both a theoretical and experimental basis for better understanding of the senescence progression of BMHCs and the optimal timing for anti-senescence drug interventions in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.