As an effectual simple wireless equivalent created in the telecommunications (telephone) industry, Wireless Asynchronous Transfer Mode (WATM) is utilized to stream unified traffics like video, data, and voice data. In the asynchronous data transfer mode, voice data transfer a packet with the same medium, and data share the networks and burst data. Effective WATM data transmission requires an extensive array of designs, techniques used for control, and simulation methodologies. The congestion of the network is among the key challenges that lower the entire WATM performance during this procedure, in addition to the delay in cell and the overload of traffic. The congestions cause cell loss, and it requires expensive switches compared to the LAN. Consequently, in this current study, the application of an effectual switching model together with a control mechanism that possesses multiple accesses is employed. The multiple access process and switching model are utilized to establish an effective data sharing process with minimum complexity. The switching model uses the synchronous inputs and output ports with buffering to ensure the data sharing process. The traffic in the network is decreased, and the loss of packets in the cells is efficiently kept to a minimum by the proposed technique. The system being discussed is employed through the utilization of software employed using OPNET 10.5 simulation, with the valuation of the WATM along with the investigational outcomes accordingly. The system's efficiency is assessed by throughput, latency, cell loss probability value (CLP), overhead network, and packet loss. Thus, the system ensures the minimum packet loss (0.1 %) and high data transmission rate (96.6 %)
Read full abstract