Abstract T cells are the master regulators of adaptive immune responses, and many autoimmune diseases arise due to a breakdown of self-tolerance in T cells. Understanding of the molecular mechanisms underlying T cell tolerance will lead to development of pharmacological approaches either to promote the tolerance state in terms of autoimmunity or to break tolerance in cancer. E3 ubiquitin ligases have been placed among the essential molecules involved in the regulation of T cell functions and T cell tolerance. We as well as other groups have reported that T cells activated in the absence of both CD28 and ICOS costimulation developed into tolerant T cells, associated with markedly upregulated expression of the E3 ubiquitin ligase GRAIL. In order to understand the physiological function of GRAIL, we generated mice deficient in Grail by replacing region that encompassing most of the RING domain and responsible for E3 ubiquitin activity. Remarkably, genetic inactivation of E3 ubiquitin ligase function of GRAIL led to T cell hyper-responsiveness to TCR/CD3z signaling and their independency to costimulation for activation. As a result, GRAIL-deficient mice were more predisposing to autoimmune diseases. On the other hand, modulation of GRAIL function helped to boost T cell immune responses to cancer, and, therefore, mediate tumor rejection. Thus, modulation of the E3 ligase activity of GRAIL might be an important approach to control T cell functions in autoimmunity or cancer.
Read full abstract