We report our recent investigation on the conversion efficiency improvement of a PPMgLN-based single pump pass, singly resonant optical parametric oscillator (OPO) pumped by an acousto-optic Q-switched fiber MOPA. The impacts of the pump pulse duration and signal reflectivity on the pump-to-idler conversion efficiency were studied by numerically solving the coupled wave equations in the first place. The results revealed that longer pulse durations were beneficial to higher conversion efficiencies as long as the signal reflectivity of the OPO cavity was optimized accordingly. Experiments were carried out thereafter utilizing the optimal parameters obtained from the simulation. Idler powers of 4.7 and 3.81 W were achieved at 3.4 and 3.8 μm, respectively, under the highest pump power of 28 W with pump pulse duration of 240 ns. The experimental results were in good agreement with the calculated results. According to our simulation, higher conversion efficiency could be expected when such an OPO was pumped by pulses with even longer duration provided that the signal reflectivity of the output coupler was optimized under that pump condition.
Read full abstract