The concept of preorganization is famous in coordination chemistry for having transformed flexible bidentate 2,2'-bipyridine scaffolds into rigid 1,10-phenanthroline platforms. The resulting boosted affinities for d-block cations has successfully paved the way for the design of a wealth of functional complexes, devices and materials for analysis and optics. Its extension toward terdentate homologues adapted for the selective complexation of f-block cations with larger coordination numbers remains more overlooked. The resulting rigidification of 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridine ligands (L1-L7) produces the highly preorganized and extended polyaromatic benzo[4',5']imidazo[1',2' : 1,2]pyrido[3,4-b]benzo[4,5]imidazo[1,2-h][1,7]naphthyridines (L8-L11) receptors, which offer some novel and rare opportunities for efficiently complexing trivalent lanthanides with polyaromatic soft terimine ligands. The crystal structures of the stable heteroleptic [LkLn(hfac)3 ] adducts (Lk=L1, L8, L9; Ln=La, Eu, Gd, Er, Yb, Y; H-hfac=1,1,1,5,5,5-hexafluoropentane-2,4-dione) show a drastic decrease in the Ln-N bond valences upon replacement of the flexible ligand L1 with its preorganized counterparts L8 and L9. This points to a limited match between the preorganized cavity and the entering [Ln(hfac)3 ] lanthanide containers. However, thermodynamic studies conducted in dichloromethane reach the opposite conclusion, with an improved affinity, by up to three orders of magnitude for catching Ln(hfac)3 when L1 is replaced by the preorganized L8-L9 receptors. The key to the enigma lies in the removal of the energy penalty which accompanies the formation of flexible [L1Ln(hfac)3 ] complexes in solution. This driving force overcomes the poor match between the preorganized terdentate N∩ N∩ N cavity in L8 and L9 and the size of trivalent lanthanides. As planned, the rigid, planar and extended π-conjugated system found in L8 and L9 shifts the ligand-centered absorption bands by about 5000 cm-1 toward lower energies, a crucial point if these stable [L8Ln(hfac)3 ] and [L9Ln(hfac)3 ] platforms have to be considered for the visible sensitization of luminescent lanthanides in metallopolymers.