Topoisomerase II is an essential nuclear enzyme involved in regulating DNA topology to facilitate replication and cell division. Disruption of topoisomerase II function by chemotherapeutic agents is in use as an effective strategy to fight cancer. Etoposide is an anticancer therapeutic that disrupts the catalytic cycle of topoisomerase II and stabilizes enzyme-bound DNA strand breaks. Etoposide is metabolized into several species including active quinone and catechol metabolites. Our previous studies have explored some of the details of how these compounds act against topoisomerase II. In our present study, we extend those analyses by examining several effects of etoposide quinone on topoisomerase IIα including whether the quinone impacts ATP hydrolysis, DNA ligation, cleavage complex persistence, and enzyme/DNA binding. Our results demonstrate that the quinone inhibits relaxation at 100-fold lower levels of drug when compared to that of etoposide. Further, the quinone inhibits ATP hydrolysis by topoisomerase IIα. The quinone does appear to stabilize single-strand breaks similar to etoposide suggesting a traditional poisoning mechanism. However, there is minimal difference in cleavage complex persistence in the presence of etoposide or etoposide quinone. In contrast to etoposide, we find that etoposide quinone blocks enzyme/DNA binding, which provides an explanation for previous data showing the ability of the quinone to inactivate the enzyme over time. Finally, etoposide quinone is able to stabilize the N-terminal protein clamp implying an interaction between the compound and this portion of the enzyme. Taken together, the evidence supports a two-mechanism model for the effect of the quinone on topoisomerase II: (1) interfacial poison and (2) covalent poison that interacts with the N-terminal clamp and impacts the binding of DNA.
Read full abstract