Abstract

Topoisomerase II regulates DNA topology by generating transient double-stranded breaks. The anticancer drug etoposide targets topoisomerase II and is associated with the formation of secondary leukemias in patients. The quinone and catechol metabolites of etoposide may contribute to strand breaks that trigger leukemic translocations. To further analyze the characteristics of etoposide metabolites, we extend our previous analysis of etoposide quinone to the catechol. We demonstrate that the catechol is ∼2-3-fold more potent than etoposide and under oxidative reaction conditions induces high levels of double-stranded DNA cleavage. These results support a role for etoposide catechol in contributing to therapy-induced DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.