Ni-based catalysts (Ni, Ni–La2O3, and Ni–La2O3–CeO2) on mesoporous silica supports (SBA-15 and KIT-6) were prepared by an incipient wetness impregnation and tested in glycerol steam reforming (GSR) for hydrogen-rich gas production. The catalysts were characterized by the N2-physisorption, TPD, X-ray diffraction (XRD), SEM-EDS, and TEM techniques. N2-physisorption results of calcined catalysts highlight that adding of La2O3 increased surface area of the catalyst by preventing pore mouth plugging in SBA-15, which was frequently observed due to the growth of NiO crystals. A set of GSR experiments over the catalysts were performed in an up-flow continuous packed-bed reactor at 650 °C and atmospheric pressure. The highest hydrogen concentration of 62 mol% was observed with a 10%Ni–5%La2O3 –5%CeO2/SBA-15 catalyst at a LHSV of 5.8 h−1. Adding of CeO2 to the catalyst appeared to increase catalytic stability by facilitating the oxidative gasification of carbon formed on/near nickel active sites of Ni–La2O3–CeO2/SBA-15 and Ni–La2O3–CeO2/KIT-6 catalyst during the glycerol steam reforming reaction.
Read full abstract