Abstract

Excess crude glycerol derived as a by-product from biodiesel industry prompts the need to valorise glycerol to value-added chemicals. In this context, catalytic steam reforming of glycerol (SRG) was proposed as a promising and sustainable alternative for producing renewable hydrogen (H2). Herein, the development of nickel (Ni) supported on ceria-modified mesoporous γ-alumina (γ-Al2O3) catalysts and their applications in catalytic SRG (at 550–750 °C, atmospheric pressure and weight hourly space velocity, WHSV, of 44,122 ml·g−1·h−1 (STP)) is presented. Properties of the developed catalysts were characterised using many techniques. The findings show that ceria modification improved Ni dispersion on γ-Al2O3 catalyst support with highly active small Ni particles, which led to a remarkable catalytic performance with the total glycerol conversion (ca. 99%), glycerol conversion into gaseous products (ca. 77%) and H2 yield (ca. 62%). The formation rate for H2 production (14.4 × 10−5 mol·s−1·g−1, TOF (H2) = 3412 s−1) was significantly improved with the [email protected]2O3 catalyst, representing nearly a 2-fold increase compared with that of the conventional [email protected]2O3 catalyst. In addition, the developed catalyst also exhibited comparatively high stability (for 12 h) and coke resistance ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call