In this study, manganese peroxidase (MnP) was applied to induce the in vitro oxidation of sulfamethoxazole (SMX). The results indicated that 87.04% of the SMX was transformed and followed first-order kinetics (kobs=0.438 h−1) within 6 h when 40 U L−1 of MnP was added. The reaction kinetics were investigated under different conditions, including pH, MnP activity, and H2O2 concentration. The active species Mn3+ was responsible for the oxidation of SMX, and the Mn3+ production rate was monitored to reveal the interaction among MnP, Mn3+, and SMX. By integrating the characterizations analysis of the MnP/H2O2 system with the density functional theory (DFT) calculations, the proton-coupled electron transfer (PCET) process dominated the catalytic circle of MnP and the transformation of Mn3+. Additionally, possible oxidation pathways of SMX were proposed based on single-electron transfer mechanism, which primarily included the S–N bond cleavage, the C–S bond cleavage, and one electron loss without bond breakage. It was then transformed to hydrolysis, N–H oxidation, self-coupling, and carboxylic acid coupling products. This study provides insights into the atomic-level mechanism of MnP and the transformation pathways of sulfamethoxazole, which lays a significant foundation for the potential of MnP in wastewater treatment applications.
Read full abstract