Abstract

Integration of distinct substrate activation modes in a catalytic circle is critical for the development of new, powerful synthetic methodologies toward complex and value-added chemicals from simple and readily available feedstocks. Here, we describe a highly selective difunctionalization of imines through incorporation of activation of CO2 by intramolecular N/B Lewis pairs into a copper catalytic cycle. Experimental and computational studies on the mechanistic aspect revealed an α-borylalkylamido intermediate, a metal amide-based Lewis pair formed by borylation of a C-N double bond, and enabled an unprecedented CO2 fixation pattern that is in sharp contrast to the traditional CO2 insertion into transition-metal-element bonds. The unique lithium cyclic boracarbamate products could be easily transformed into multifunctional N-carboxylated α-amino boronates. The highly diastereoselective reactions of chiral N-tert-butanesulfinyl aldimines were also achieved. We hope that our findings may inspire further development of selective multicomponent reactions by incorporation of Lewis pair chemistry into transition-metal catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.