Photoenzyme-coupled catalytic systems offer a promising avenue for selectively converting CO2 into high-value chemicals or fuels. However, two key challenges currently hinder their widespread application: the heavy reliance on the costly coenzyme NADH, and the necessity for metal-electron mediators or photosensitizers to address sluggish reaction kinetics. Herein, we present a robust 2D/2D MXene/C3N5 heterostructured artificial photosynthesis platform for in situ NADH regeneration and photoenzyme synergistic CO2 conversion to HCOOH. The efficiencies of utilizing and transmitting photogenerated charges are significantly enhanced by the abundant π-π conjugation electrons and well-engineered 2D/2D hetero-interfaces. Noteworthy is the achievement of nearly 100 % NADH regeneration efficiency within just 2.5 h by 5 % Ti3C2/C3N5 without electron mediators, and an impressive HCOOH production rate of 3.51 mmol g−1h−1 with nearly 100 % selectivity. This study represents a significant advancement in attaining the highest NADH yield without electron mediator and provides valuable insights into the development of superior 2D/2D heterojunctions for CO2 conversion.