Abstract

Photoenzyme-coupled catalytic systems offer a promising avenue for selectively converting CO2 into high-value chemicals or fuels. However, two key challenges currently hinder their widespread application: the heavy reliance on the costly coenzyme NADH, and the necessity for metal-electron mediators or photosensitizers to address sluggish reaction kinetics. Herein, we present a robust 2D/2D MXene/C3N5 heterostructured artificial photosynthesis platform for in situ NADH regeneration and photoenzyme synergistic CO2 conversion to HCOOH. The efficiencies of utilizing and transmitting photogenerated charges are significantly enhanced by the abundant π-π conjugation electrons and well-engineered 2D/2D hetero-interfaces. Noteworthy is the achievement of nearly 100 % NADH regeneration efficiency within just 2.5 h by 5 % Ti3C2/C3N5 without electron mediators, and an impressive HCOOH production rate of 3.51 mmol g−1h−1 with nearly 100 % selectivity. This study represents a significant advancement in attaining the highest NADH yield without electron mediator and provides valuable insights into the development of superior 2D/2D heterojunctions for CO2 conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.