The polarizable continuum model (PCM) has been one of the most widely used approaches to take into account the solvation effect in quantum chemical calculations. In this paper, we performed a series of benchmark calculations to assess the accuracy of the PCM scheme combined with the second-order complete-active-space perturbation theory (CASPT2) for molecular systems in polar solvents. For solute molecules with extensive conjugated π orbitals, exemplified by elongated conjugated arylcarbenes, we have incorporated the ab initio density matrix renormalization group algorithm into the PCM-CASPT2 method. In the previous work, we presented a combination of the DMRG-CASPT2 method with the reference interaction site model (RISM) theory for describing the solvation effect using the radial distribution function and compared its performance to the widely used density-functional approaches (PCM-TD-DFT). The work here allows us to further show a more thorough assessment of the RISM model compared to the PCM with an equal level of the wave function treatment, the (DMRG-)CASPT2 theory, toward a high-accuracy electronic structure calculations for solvated chemical systems. With the exception that the PCM models are not capable of properly describing the hydrogen bondings, accuracy of the PCM-CASPT2 model is in most cases quite comparable to the RISM counterpart.