Abstract

8-Oxo-2'-deoxyguanosine (OG) is the most common DNA lesion. Notably, OG becomes more susceptible to oxidative damage than the undamaged nucleoside, forming mutagenic products in vivo. Herein the reactions of singlet O2 with the radical cations of 8-oxo-2'-deoxyguanosine (OG.+ ) and 9-methyl-8-oxoguanine (9MOG.+ ) were investigated using ion-molecule scattering mass spectrometry, from which barrierless, exothermic O2 -addition products were detected for both reaction systems. Corroborated by static reaction potential energy surface constructed using multi-reference CASPT2 theory and molecular dynamics simulated in the presence of the reactants' kinetic and internal energies, the C5-terminal O2 -addition was pinpointed as the most probable reaction pathway. By elucidating the reaction mechanism, kinetics and dynamics, and reaction products and energetics, this work constitutes the first report unraveling the synergetic damage of OG by ionizing radiation and singlet O2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.