Hereditary angioedema (HAE) is a rare and potentially life-threatening genetic disorder, constituting approximately 2% of all clinical cases of angioedema, with a global prevalence estimated between 1 in 50,000 and 1 in 150,000 individuals. The condition affects individuals of all genders and ethnic backgrounds without significant variation. HAE is classified into three types. Type I HAE, which accounts for 85% of cases, is characterized by a deficiency of the C1 esterase inhibitor (C1-INH) gene. Type II HAE, making up 15% of cases, involves a dysfunctional C1-INH. Type III HAE, which represents about 5% to 10% of cases, is often estrogen-dependent and although several mutations have been identified, it typically involves normal C1-INH activity. Despite the differences in C1-INH functionality, all three types of HAE manifest with similar clinical symptoms. HAE leads to recurrent episodes of non-pruritic angioedema, which occurs in the absence of urticaria. Breakthroughs in understanding HAE pathophysiology have revolutionized treatment, leading to the development of highly targeted therapies for both acute management and long-term prevention. Meanwhile, cutting-edge advancements in omics technologies are unlocking new possibilities for biomarker discovery, paving the way for more precise diagnoses and personalized treatment strategies that could significantly enhance patient outcomes. This review will delve into the intricate pathophysiology, diverse clinical presentations, and diagnostic challenges of HAE while exploring emerging biomarkers and innovative approaches to therapeutic management and prevention strategies. Additionally, it will underscore the vital importance of screening family members of affected individuals, even when symptoms are not present.