This work aims to investigate the structural, electrical, and optical properties of InAs quantum dots (QDs) grown by Molecular Beam Epitaxy on GaAs substrates. As-made samples were thoroughly characterized using different techniques, including Atomic Force Microscopy (AFM), X-ray diffraction (XRD), and highresolution X-ray diffraction (HRXRD). The patterns of HRXRD revealed an excellent crystallinity of the nanostructure with a maximum diameter of 25 nm as demonstrated by AFM images. The photoluminescence (PL) spectra showed two distinct bands centered at 835 and 1210 nm, and the intensity of these wavelengths increased with decreasing temperature. A redshift accompanied by a decrease in the FWHM as a function of temperature was observed as a consequence of the thermal escape of carriers. The Ideality factor (n), built-in potential energy, and series resistance at different temperatures were also determined from current-voltage characteristics curves.