The present paper is part of a study dealing with various aspects of reproduction of two Costa Rican Clusia species offering resin as a floral reward. It provides data on the floral development and flower (especially stamen and staminode) anatomy of one of the species, Clusia valerioi. In the early stages, both male and female flowers develop in the same manner. The bracts are distinguished by a decussate arrangement from the five sepals and five petals, which emerge in a spiral manner. In the male flowers the apical meristem forms five meristematic mounds (common stamen primordia) that are pentagonally arranged around the apical meristem in epipetalous position. From these mounds, the primordia of the proper stamina emerge in 3–5 whorls. Direction is centrifugal. In the centre, five hemispherical bulges arise which develop into carpel primordia. These, however, cease growth, stay rudimentary and are hidden by the stamens in the mature male flower. The adult stamens consist mainly of a thick angular filament column, while the two anthers situated at the flattened top are very small. One anther is annular and surrounds a second, hemispherical one right in the centre. At the periphery, these two pollen sacs (provided with a distinct wall of customary anatomy) are surrounded by a ring-like protuberance of the filament. The resin canals are situated at the periphery of the filament. Their schizogenous development is documented in cross sections. At anthesis, the resin is released from the ring-like filament protuberance by burst of the single-layered epidermis. In the female flower, the five meristematic mounds produce two whorls of staminode primordia. The development of the staminodes does not essentially differ from that of the fertile stamens, but some staminodes lack the central pollen sac and the other tissues do not develop into pollen grains. An attempt is made to derive the peculiar stamen morphology of Clusia valerioi and similar species from conventional stamens. Three hypotheses are proposed and discussed.
Read full abstract