The goal of this research work was to investigate the improvement of bio-oil issued from beechwood biomass through catalytic de-oxygenation. Pyrolysis was conducted in an auger reactor and the catalytic treatment was performed in a fluidized catalytic bed reactor. Lab-synthesized Fe-HZSM-5 catalysts with different iron concentrations were tested. BET specific surface area, BJH pore size distribution, and FT-IR technologies were used to characterize the catalysts. Thermogravimetric analysis was used to measure the amount of coke deposited on the catalysts after use. Gas chromatography coupled to mass spectrometry (GC-MS), flame ionization detection (GC-FID), and thermal conductivity detection (GC-TCD) were used to identify and quantify the liquid and gaseous products. The pyrolysis temperature proved to be the most influential factor on the final products. It was observed that a pyrolysis temperature of 500 °C, vapor residence time of 18 s, and solid residence time of 2 min resulted in a maximum bio-oil yield of 53 wt%. A high percentage of oxygenated compounds, such as phenolic compounds, guaiacols, and the carboxylic acid group, was present in this bio-oil. Catalytic treatment with the Fe-HZSM-5 catalysts promoted gas production at the expense of the bio-oil yield, however, the composition of the bio-oil was strongly modified. These properties of the treated bio-oil changed as a function of the Fe loading on the catalyst, with 5%Fe-HZSM-5 giving the best performance. A higher iron loading of 5%Fe-HZSM-5 could have a negative impact on the catalyst performance due to increased coke formation.