Abstract
The most stable conformer of laser-ablated diflunisal has been isolated in a supersonic expansion and experimentally detected through high-resolution chirped-pulse rotational spectroscopy. State-of-the-art chemical calculations allowed to understand the nature of the strong stabilization of the detected conformer and its atropisomer among a total of sixteen theoretically predicted conformers and confirmed the presence of a resonance assisted hydrogen bond (RAHB) between the hydroxyl hydrogen atom and the carbonyl oxygen atom of the carboxylic acid group. The comparison of the experimental data from this work and the information found in the literature about the molecule in condensed phases corroborates the existence of these two atropisomers and is contextualized within the complexation arrangement of diflunisal with relevant proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.