The banded iron-formation (BIF) of the Hamersley Group, Pilbara Craton, Western Australia, particularly from the well studied Dales Gorge Member, is unique in its lateral stratigraphic and petrological continuity throughout an area exceeding 60,000 km 2, enabling reasonable estimates for the annual input of components to the depository. In the model of this paper, varying supply of materials for the medley of mesoband types, particularly of iron and silica in the oxide BIF, can be accommodated by the interaction of two major oceanic supply systems: (1) surface currents and (2) convective upwelling from mid-oceanic ridge (MOR) or hot-spot activity, both modified by varied input of pyrochastic material. (1) The surface currents were saturated in silica and carried minimal iron due to photic precipitation, but were periodically recharged by storm mixing. Precipitation from them gave rise to the banded chert-rich horizons, including the varves, whose regular and finely laminated iron/silica distribution resulted from seasonal meteorological influences. (2) Precipitation from convection driven upwelling of high iron solution from MOR or hot-spot activity periodically overwhelmed the delicate seasonal patterns of (1) to produce the iron-dominated mesobands. A wide range of intermediate mesoband types resulted where the deep water supply was modified by varied MOR activity, or by partial blocking of upwelling waters by surface currents (such as by the present El Niño). During these periods of oxide-dominated BIF, silica was deposited from saturated solution mainly by evaporative concentration, and iron by oxidation due to photolysis and photosynthetically produced oxygen. Superimposed on these supply differences was the varying effect of fine aluminous ash from dominantly northern distal volcanic sources, changing the meteorological and depositional conditions. Occasional input of extremely fi ash during BIF precipitation produced mesoband (cm) scale variations involving increased carbonate-silicate precipitation. Sustained volcanic periods resulted in S-macroband deposition (chert-carbonate-silicate BIF, with shale), gradually returning to the dominant hematite-magnetite-chert BIF as the volcanic input waned. During volcanic periods, the normally high capacity of sunlight to precipitate ferric iron directly by photolytic oxidation of ferrous iron, and by photosynthetic production of oxygen, was modified by turbidity in the atmosphere (aerosols and dust) and in the water (colloids from reactive ash). S Surface-precipitated ferric hydroxyoxide redissolved in the presence of decaying organic matter in the subphotic zone, augmenting the iron content of the zone. Precursor ferrous carbonates and silicates were precipitated when the iron concentration of this sub-photic zone exceeded their respective solubilities. During volcanism, the increased availability of nutrients, particularly phosphorus, to surface waters increased the organic contribution despite lower light values, leading to an almost total absence of ferric iron oxides in the S macrobands (i.e. no magnetite or hematite). Cooling of warm, silica-saturated sea-water during these periods of “olcanic winter” increased the ratio of precipitation of silica to iron, which, however, was still controlled by seasonal conditions. Intermediate concentrations of organic matter, insufficient to totally convert the ferric compounds either during precipitation or diagenesis, resulted in overgrowths of magnetite on hematite, and eventually in the substantial conversion of hematite to magnetite, where higher temperatures were achieved during low-grade regional metamorphism. Changes in sea-level to explain facies changes in BIF are not required in this model, but are not excluded. The preferred conditions are for a very low oxygen to anoxic atmosphere, a much higher level of MOR activity than at present, the presence of photosynthetic plankton, the absence of si silica-secreting organisms, and a deep sea-water temperature higher than 20°C. However, none of these conditions is essential to the model. A narrow carbonate bank is postulated for part of the Fortescue River Valley area during Marra Mamba Iron Formation times (basal Hamersley Group), with BIF precipitation on either side. The reef is postulated to have grown northward becoming a major shallow-water carbonate platform on the Pilbara continent during upper Marra Mamba Iron Formation and Wittenoom Dolomite times, but ceased to play an important role in subsequent periods.