We investigated the sensitivity of rat heart microsomes to free radical attack using Fourier transform infrared (FT-IR) spectroscopy. This physico-chemical method seemed a valuable technique: quite sensitive to changes in the vibrational spectra. The spectral variations observed between normal and treated rats were in great part due to reactive oxygen species that led to changes in protein conformation involving beta-sheets, aggregation of proteins, and modification of protein synthesis. Carrageenan-induced inflammation slightly enhanced the total lipid content; rearrangement of acyl chains and accumulation of cholesterol esters and phospholipids also occurred in the treated rats. Carbon tetrachloride induced a decrease in both lipid and protein contents. The level of glucidic substrates was diminished with carbon tetrachloride and enhanced with carrageenan; these changes were due to metabolic interactions between cell components and drugs. FT-IR spectroscopy provided an accurate means to monitor, in rat heart, the in vivo effects of inflammatory and peroxidative damages, to discriminate and classify the affected cells, and to correlate the findings with known physiological and biochemical data in close relationship with metabolic disruptions induced by the two xenobiotics.