Abstract Considerable improvements have been made in the analysis of elastomer blends for composition, morphology and filler inter-phase distribution. GC, IR, NMR and thermal analysis (DTG, DSC, TG) techniques can provide quantitative information on composition. The latter three methods, along with SAXS, SANS, DMTA and microscopy (LM phase contrast, TEM, SEM, AFM) are also useful for resolving differences in blend homogeneity. The microscopical techniques are the most useful for characterizing morphology. TEM, in conjunction with cryosectioning and staining techniques, has provided the best means of resolving filler distribution to date. However, new AFM scanning modes may provide improved analyses in the future. Carbon black inter-phase distribution in blends of NR, SBR and BR can be controlled reasonably well by blending Banbury mixed masterbatches containing the desired carbon black loading in each polymer. Transfer of carbon black from one elastomer to another is favored by low unsaturation for the polymer originally containing the black, or a low heat history (e.g. solution and latex mixing) during preparation of the masterbatch. The overall polymer interaction with carbon black increases in the order: IIR, EPDM, NR, BR, SBR, the latter two being fairly close. Commercial carbon blacks will transfer extensively from an IIR Banbury masterbatch to NR, but not from EPDM to NR. Significant transfer to SBR occurs from both IIR and EPDM. Inert (partially graphitized) carbon blacks tend to distribute more evenly between the blend components regardless of which polymer contained them initially. Carbon black phase distributional variations can cause significant changes in unvulcanized and vulcanized rubber properties. For NR/BR and NR/SBR blends, reduced hysteresis generally occurs with a higher carbon black loading in the NR phase. Tear strength and cut growth tend to be maximized with higher carbon black in the continuous polymer phase, particularly when that phase is the higher strength polymer. The smaller the carbon black particle size, the greater the improvement in tear strength as a function of phase distribution. NR/BR fatigue life was maximized with about an equal distribution of carbon black in each polymer. This type of carbon black distribution also produced the greatest resistance to ozone cracking for NR/EPDM blends, which were further improved with very small domain size for the EPDM (disperse) phase. The abrasion resistance of NR/BR blends has indicated some improvement in the direction of higher carbon black in the BR. These results have been variable, however, and further study is needed for clarification.
Read full abstract