In this study, we investigated the effect of carbon black distribution on the degradation of mechanical properties of high-density polyethylene in the form of plastic pipes used in water distribution networks. Polyethylene pipes with similar carbon black concentrations but different carbon black distributions were produced with industrial scale compounding and extrusion equipment. Tensile specimens were directly prepared from extruded pipe samples and elongated to fracture at different strain rates. Carbon black distributions of bulk samples and fracture surfaces were investigated using stereo and scanning electron microscopy (SEM). It was found that the carbon black distributions, fracture surfaces and fracture modes were significantly different in these pipes. Although the yield properties were similar, the post-yield properties of samples were significantly different, dramatically decreasing with the increasing inhomogeneity of carbon black distribution. Pipes with a certain level of heterogeneity in the carbon black distribution showed ductile and brittle fractures in the same fracture plane, whereas homogenous black and natural polyethylene (without carbon black) showed ductile fractures only.
Read full abstract