The effectiveness of various transition metal phosphate-based acid catalysts, including vanadium and niobium, in the hydrothermal synthesis of carbon dots (CDs), has been assessed. Two sources of carbohydrates were employed for this: commercial xylose and liquor of xylose produced by processing olive pits. Catalysts were identified using the NH3-TPD, DTA/TG, XRD, and XPS techniques. The reaction was conducted for 4 h at a temperature of 180 °C. The existence of such nanoparticles, regardless of the carbohydrate source, was confirmed by an analysis of the features and characteristics of CDs nanoparticles. N-doped CDs with increased fluorescence were also created at the same time using a similar hydrothermal technique, and their photocatalytic activity was investigated. A Life Cycle Assessment (LCA) was conducted for both syntheses with the goal of comparing the environmental effects of the synthesis from commercial xylose to the synthesis from biomass. It was revealed that, although energy is the primary driver of both synthesis pathways' effect categories, the fundamental variations that seem to determine their relative sustainability are connected to the nature of the carbon precursor. Regarding the latter, it is determined that electricity has the greatest environmental impact.
Read full abstract