With the rapid advancement of modern medical technology, microscopy imaging systems have become one of the key technologies in medical image analysis. However, manual use of microscopes presents issues such as operator dependency, inefficiency, and time consumption. To enhance the efficiency and accuracy of medical image capture and reduce the burden of subsequent quantitative analysis, this paper proposes an improved microscope salient object detection algorithm based on U2-Net, incorporating deep learning technology. The improved algorithm first enhances the network's key information extraction capability by incorporating the Convolutional Block Attention Module (CBAM) into U2-Net. It then optimizes network complexity by constructing a Simple Pyramid Pooling Module (SPPM) and uses Ghost convolution to achieve model lightweighting. Additionally, data augmentation is applied to the slides to improve the algorithm's robustness and generalization. The experimental results show that the size of the improved algorithm model is 72.5MB, which represents a 56.85% reduction compared to the original U2-Net model size of 168.0MB. Additionally, the model's prediction accuracy has increased from 92.24 to 97.13%, providing an efficient means for subsequent image processing and analysis tasks in microscopy imaging systems.
Read full abstract