ABSTRACTCompetitive interactions between Streptococcus pneumoniae strains during host colonization could influence the serotype distribution in nasopharyngeal carriage and pneumococcal disease. We evaluated the competitive fitness of strains of serotypes 6B, 14, 19A, 19F, 23F, and 35B in a mouse model of multiserotype carriage. Isogenic variants were constructed using clinical strains as the capsule gene donors. Animals were intranasally inoculated with a mixture of up to six pneumococcal strains of different serotypes, with separate experiments involving either clinical isolates or isogenic capsule-switch variants of clinical strain TIGR4. Upper-respiratory-tract samples were repeatedly collected from animals in order to monitor changes in the serotype ratios using quantitative PCR. A reproducible hierarchy of capsular types developed in the airways of mice inoculated with multiple strains. Serotype ranks in this hierarchy were similar among pneumococcal strains of different genetic backgrounds in different strains of mice and were not altered when tested under a range of host conditions. This rank correlated with the measure of the metabolic cost of capsule synthesis and in vitro measure of pneumococcal cell surface charge, both parameters considered to be predictors of serotype-specific fitness in carriage. This study demonstrates the presence of a robust competitive hierarchy of pneumococcal serotypes in vivo that is driven mainly, but not exclusively, by the capsule itself.