The multirecess noncircular hybrid journal bearings have been receiving wide importance in order to overcome the adverse effects on performance characteristics of multirecess circular journal bearings. During the lifetime of a machine, bearings are quite often required to be operated over a number of years and are subjected to several start and stop operations. As a consequence of this, the bush becomes progressively worn out and thereby changing the clearance space between journal and bearing. The present paper presents an analytical study investigating the effect of wear along with both aligned and misaligned conditions of journal on the performance of a capillary compensated three-lobe three-pocket hybrid journal bearing system for the various offset factors δ = 0.8,1.0, and 1.2. The wear caused on the bearing surface due to the transient (start/stop) operations has been modeled using Dufrane’s wear model. The modified Reynolds equation governing the flow of lubricant in the clearance space of a three-lobe multirecess worn hybrid journal bearing system along with both aligned and misaligned conditions of journal has been solved using an iterative scheme based on FEM. The influence of offset factor (δ), the wear depth parameter (δ¯w), and journal misalignment factors (σ¯,δ¯) on the performance of the three-lobe three-pocket hybrid journal bearing and three-pocket circular hybrid journal bearing system have been investigated. The results have been presented for the capillary compensated three-lobe three-pocket hybrid journal bearing system. The simulated results suggest that a bearing with a higher value of offset factor (δ>1) provides better static and dynamic performance characteristics as compared with a three-pocket circular journal bearing but the bearing with offset factor (δ < 1) is predominantly affected by the wear defect and misalignment of journal. The numerically simulated results suggest that the wear defect and offset factors significantly affect the bearing performance. Therefore, it becomes imperative to account for the influence of wear and offset factors during the design process so as to generate accurate data of bearing performance. The numerically simulated results have been presented in terms of maximum fluid-film pressure, minimum fluid-film thickness, lubricant flow rate, direct fluid-film stiffness, damping coefficients, and stability threshold speed margin. The present study demonstrates that the performance of bearing is significantly affected by wear along with both aligned and misaligned conditions of journal and the loss is partially compensated by keeping the offset factor δ>1.
Read full abstract