Fission chambers are neutron detectors which are widely used to instrument experimental reactors such as material testing reactors or zero power reactors. In the presence of a high level mixed gamma and neutron flux, fission chambers can be operated in Campbelling mode (also known as “fluctuation mode” or “mean square voltage mode”) to provide reliable and precise neutron related measurements. Fission chamber calibration in Campbelling mode (in terms of neutron flux) is usually done empirically using a calibrated reference detector. A major drawback of this method is that calibration measurements have to be performed in a neutron environment very similar to the one in which the calibrated detector will be used afterwards. What is proposed here is a different approach based on characterizing the fission chamber response in terms of fission rate. This way, the detector calibration coefficient is independent from the neutron spectrum and can be determined prior to the experiment. The fissile deposit response to the neutron spectrum can then be assessed independently by other means (experimental or numerical). In this paper, the response of CEA-made miniature fission chambers in Campbelling mode is studied. A theoretical model of the signal is used to calculate the calibration coefficient. The model's input parameters come from statistical distribution of individual pulses. Supporting measurements were made in the CEA Cadarache zero power reactor MINERVE and results are compared to an empirical Campbelling mode calibration. The tested fission chamber calibration coefficient is roughfly 2 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$10^{-26}$</tex></formula> <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\rm A}^{2}$</tex></formula> /Hz/(c/s). Both numerical and empirical methods give consistent results, however a deviation of about 15% was observed.
Read full abstract