Surplus dairy calves often arrive at veal and dairy-beef rearing facilities with health and blood metabolite level abnormalities, which can affect their welfare and performance, predisposing them to future health challenges. The objective of this randomized controlled trial was to investigate the effects of transport duration and age at the time of transport on blood parameters in surplus dairy calves following 6, 12, or 16 h of continuous road transportation. All surplus calves from 5 commercial dairy farms in Ontario were enrolled and examined daily before transport (n = 175). On the day of transportation, calves were weighed, blood sampled, and randomly assigned to 6, 12, or 16 h of transportation. Blood samples were then collected immediately after transportation, as well as 24, 48, and 72 h thereafter. Serum was analyzed at a provincial diagnostic laboratory for nonesterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), creatine kinase (CK), cholesterol, and haptoglobin. In addition, blood gas and electrolyte values were also assessed at the time of sample collection. Mixed models with repeated measures were used to assess the effects of transport duration, breed, sex, transfer of passive immunity status, weight before transportation, and age at transportation on blood parameters. Immediately following transportation, NEFA and BHBA were greater for calves transported for 12 h (Δ = 0.22 mmol/L NEFA, 95% CI = 0.15 to 0.30; Δ = 0.04 mmol/L BHBA, 95% CI = 0.02 to 0.06) and 16 h (Δ = 0.35 mmol/L NEFA, 95% CI = 0.27 to 0.42; Δ = 0.10 mmol/L BHBA, 95% CI = 0.08 to 0.11) compared with calves transported for 6 h. Glucose was lower immediately following transportation in calves transported for 16 h compared with 6 h (Δ = -15.54 mg/dL, 95% CI = -21.54 to -9.54). In addition, pH and HCO3- were lower in calves transported for 12 (Δ = -0.09 pH, 95% CI = -0.13 to -0.05; Δ = -1.59 mmol/L HCO3-, 95% CI = -2.61 to -0.56) and 16 h (Δ = -0.07 pH, 95% CI = -0.12 to -0.03; Δ = -1.95 mmol/L HCO3-, 95% CI = -2.95 to -0.95) compared with calves transported for 6 h. Calves transported between 15 and 19 d of age had a higher concentration of cholesterol and CK (Δ = 0.27 mmol/L cholesterol; 37.18 U/L CK) compared with 2- to 6-d-old calves, and calves 12 to 14 d old had greater reduction in HCO3- (Δ = -0.92 mmol/L) compared with 2- to 6-d-old calves. These findings show that transporting calves for long distances results in lower glucose concentration and suboptimal energy status, and that this effect varies based on the calf's age.